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E F F E C T  O F  C O R I O L I S  F O R C E S  O N  N O N S T A T I O N A R Y  

I N C O M P R E S S I B L E  V I S C O U S  L I Q U I D  F L O W  I N  A 

C H A N N E L  

G. V. Dashkov and V. D. Tyu tyuma  UDC 532 

We present a solution of the problem of nonstationary viscous incompressible liquid flow in a channel, taking 

account of the action of Coriolis forces. In this case the solution is shown to be determined by the sole 

dimensionless Taylor parameter, with an increase of which the velocity regime of nonstationary flow changes 

from a monotonic to a pulsating one. 

The  motion of a viscous incompressible liquid in noniner t ia l  coordinate systems exhibits a number  of 

specific features ,  without account for which considerable errors  m ay  arise in both the description of the pa t te rn  of 

flow itself and calculation of its averaged hydrodynamic  parameters .  

Using as an example plane-parallel channel flow, we investigate the specific features  of the effect of Coriolis 

forces on transi t ion processes occurring in nonstat ionary incompressible  viscous liquid flows. Problems of this k ind 

in a s ta t ionary case were considered for the first time by Ekman  to describe wind- induced oceanic flows on the 

rotating Ear th  [1, 2 ]. 

We will consider a flow of liquid moving between two infini te  planes y = +__h. We will consider the cons tan t  

pressure gradient  to be directed along the OZ axis. Then,  for  a plane nonstat ionary stabilized flow, in which the  

longitudinal w and transverse (parallel to the channel walls) u velocity components are  independent  of the x and  

z coordinates,  the system of dimensionless differential equations,  taking account of the action of Coriolis forces,  

can be writ ten in the form [3 ] 

du 1 O2u 
- 2w cos fl 

Ot Ta Oy 2 

Re OP 
Eu -T-aa ~-y + 2 (wcos a - u cos y) = 0 ,  (1) 

aw Re OP 1 02w 
- -  = - E u - - - -  + - -  ~ + 2u cosfl  
Ot Ta Oz Ta Oy 2 " 

The  following model problem can be set to correspond with the system of equations (1). Suppose that  up 

to a certain initial time instant the liquid was at rest. At that  t ime instant t = 0, along the OZ axis, a cons tant  

pressure gradient  appears which causes the motion of the liquid. Let us elucidate the  special features of this  

transitional nonsta t ionary process under  conditions of the addi t ional  effect of Coriolis forces. The  solution of a 

problem of this kind in an inertial coordinate system for the case of flow in a channel  and  in a round tube is given 

in [2, 4 , 5 ] .  

Obviously, for  the above problem there  will correspond the following initial and  boundary  conditions: 

u l t = 0 = 0 ;  w i t = 0 = 0 ;  U ] y = _ + l = 0 ;  w l y = + _ l = 0 .  (2) 
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Thus ,  we are to solve a system of inhomogeneous  equations (1) u n d e r  zero initial and  boundary  condit ions 

(2). Of three  equations of this  sys tem only the first  a n d  the third are in te r re la ted  and  must  be considered together .  

The  second equation, with the  values of u and  w being known, is in tegra ted  easi ly ~ and  it serves to de t e rmine  

pressure.  

Since the sys tem of equations (1) is l inear ,  the functions sought can  be represented  as a sum of cer tain 

particular and  general solut ions:  

Here  the part icular  solution has  the form 

where 

u = u 0 + u ,  w = w 0 + w .  

form: 

= c I cosh (y V~-) cos (y V'R-) + c 2 sinh (y V ~ )  sin (y V ~ )  3 
2 R '  

= c 2 cosh (y V ~ )  cos (y V ~ )  - c I sinh (y V R )  sin (y V ~ ) ,  

cosh  ~ cos V'R sinh V ~  sin V R  ogh 2 
c 1 = 1.5 ; c 2 =  1.5 ; R = - - c o s f i .  

R (cosh 2 V~" - sin 2 VrR) g (cosh 2 V~" - sin 2 V ~ )  v 

We will write the  s y s t e m  of homogeneous  equations to determine the  funct ions u 0 and w 0 in the following 

du o 0 2Uo Ow o 0 2Wo 
T a - - - - - 5 -  2Rw o ,  T a - - - - - + 2 R u  o (3) 

Ot Oy Ot Oy 2 " 

We will seek its solution in the  form 

u 0 = e x p ( k t )  U ( y ) ,  w 0 = e x p ( k t )  W ( y ) ,  

tk is a complex number) .  Af te r  substitution of these  relat ions into the initial equat ions,  we arrive at the b o u n d a r y -  

value prob]em in eigenvalues for a system of o rd ina ry  differential equations: 

d2U = kTaU + 2 R W ,  d z W  = k T a W -  2RU (4) 
dy 2 dy 2 ' 

ghosc  solution is r epresen ted  in the form 

U = c 1 exp (2y) , W = c 2 exp (2y) ,  

Hcrc the constants  2, c 1, a n d  c 2 are assumed to be  complex numbers.  After  subst i tu t ion of these relat ions into Eq. 

(4), we will obtain the following equation to de t e rmine  2 and k: 

whence it follows that 

(22 _ kTa)2  + 4R 2 = 0 ,  

k T a  = , ~ 2  ___ 2Ri ,  

where i = x/-Z-i - is an i m a g i n a r y  unit. 

T h e  eigenvalues 2 a r e  found from b o u n d a r y  conditions (2): 
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~ t n = •  ~ ( n = 0 ,  1 , 2  . . . .  ) .  

Here  the solution of system (3) has the form (22)( 
nl /'/Yg ,7/: 

u ) = e x p  - ~ t  sin 2 t c o s f l - n - ~ y  ; 

r/2 ?lgT u ) = e x p  - ~ t  cos 2 t c o s f l - n ~ -  ( n = 0 ,  1 , 2 , : . . ) .  

The s t ruc tu re  of these functions shows that with Coriolis acceleration acting on the flow the character  of 

the propagation of perturbat ions in it changes. While in the o rd inary  case the evolution is associated with the 

diffusional  c h a r a c t e r  of the equa l iza t ion  of a velocity prof i le ,  in a noniner t i a l  coordinate  sys tem velocity 

perturbations propaga te  a l ready in the form of transverse waves that  interact with one another  and the coefficient 

of attenuation of which depends on the sole dimensionless Tay lo r  parameter  entering into this solution. As the 

number  n increases ,  the coefficient of at tenuat ion grows, while the phase velocity decreases monotonically. 

Finally, t he  solution of sys tem (1) can be written in the form 

U = Ul + U2 + U  ; W =  WI + w2 +-W , 

where 

u 1 = ~ ,  a n e x p ( - q n  t ) ( c o s ~ p  + -coS~Pn)  + ~ b n e x p ( - q n  t ) ( s i n ~ p  + - s i n ~ p n ) ;  
n=0 n=0 

w I = ~ a n e x p ( -  qn t ) ( s i n ~ ,  + -  sin~/,n)-- ~ b n e x p ( -  qn t ) ( c o s ~ p  +-cos~n); 
n=O rt=O 

+ 
u 2 = r n exp (-- Snt ) (cos ~o n + cos ~On) + 

rt=0 

+ 
w z = r n exp (-- Snt ) (sin ~o n + sin ~'n) + 

n=O 

4 
Pn exp ( -  Snt ) (sin ~'n + sin 7'n) ; 

n=O 

+ 
Pn exp ( -  Snt ) (cos ~o n + cos ~o~) ; 

n=O 

(5) 

2 2 n sr . (2n + 1) 2 2 . + 
qn = Ta ' sn = 4Ta , ~Pn = 2t cos 13 + n.~y ; ~p~ = 2t cos 13 - n a z y  ; 

+ 2n + 1 2n + 1 
~o n = 2t cos fl + ~ :ry ; ~o~- = 2t cos/3 ~ :ry.  

Since the  functions sought must satisfy initial conditions (2), for t --- 0 Eq. (5) yields 

( n;ly) 
b n sin (hazy) + r n cos - -  Jr + 0.5-u = 0 ; 

n = 0  rt=0 

n = 0  n=0  

whence we obta in  an  expression for the constant  expansion factors sought: 

3 
a n = 0 ; b n = 0 ; Pn = 0 .5  (c2A n - ClBn) ; r n = - ~  D n - 0 .5  ( Q A  n + C2Bn) ; 
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Fig. 1. Change in time of the longitudinal (a) and transverse (b) velocity 

components at the center of a channel for different values of the Taylor 

number (Ta): 1) Ta = 0; 2) 0.5; 3) 1.24; 4) 5; 5) 10; 6) 50; 7) 100. 

A n =  ( -  1)n ( J + c o s h ~ c o s ~ -  ~ s i n h v ~ s i n V r - R  -) + 
R + (:.+) 

+ ( -  1)n ( V ~ ' s i n h ~ s i n ~ - ~ P n C O S h ~ c o s V ~ ) .  
R + 

B n -  ( -  1)n ( V ~ - c o s h V ~ - c o s ~ + ~ p + s i n h ~ s i n v r R  - ) -  
R + 

- ( -  1)n ( f n s i n h ~ s i n ~ +  v rRcosh~cosVr -R- )  �9 
R + e )2 

l+)nli 4 + 2n + 1 2n + 1 --w 

The wave properties of the fundamental solutions noted above will necessarily influence the behavior of 

the functions sought. The interaction of waves no longer ensures, as in the ordinary case, a monotonic and smooth 

change in the unknown values in time, as confirmed by the results of calculations presented in Figs. 1 and 2. To 

calculate the functions u and w, we took 100 terms of the expansion series. This ensured the accuracy of velocity 
approximation at the initial time instant 10 -6 . 

Figure la presents the dimensionless velocity component vs time at the center of the channel (y = 0) for 

different values of the Taylor number within 0.1-100. It is seen from the figure that as the value of Ta increases, 

the time during which the flow reaches a steady state increases, the velocity of liquid decreases monotonically, and 

the flow acquires an increasingly pronounced pulsating nature. Moreover, the frequency of pulsations of the flow 

does not change, and it is equal to the doubled frequency of the angular velocity of rotation of the coordinate 

system, while the coefficient of attenuation decreases with increase in the Taylor number. The transition from a 

smooth monotonic change in the velocity to a pulsating mode of flow lies within the range of Taylor numbers 4 - 5 .  
When t --, oo, the oscillations decay, and the flow of liquid reaches the regime of steady motion. Attention is drawn 

to the fact that when Ta > 1, a maximum appears, at which the velocity is larger than its stationary asymptotic 

value. 

The graphs of change in the transverse velocity component at the channel center for various Taylor numbers 

as functions of time are shown in Fig. lb. The behavior of this velocity component differs from that considered 

above only in the fact that its oscillations lag behind the oscillations of the longitudinal component by a quarter of 
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Fig. 2. Change in time of the profile of the longitudinal (A) and transverse 

(B) velocity components for different values of the Taylor number (Ta): a) 

Ta = 0.5; b) 1.24; c) 5; d) 50. 

a period, and with an increase in Ta the flow velocity first increases, reaches a maximum at Ta = 1.24, and 

thereafter decreases monotonically. 

The mere form of the longitudinal and transverse velocity profiles and their change in time for different 

values of Ta are given in Fig. 2. From the graphs presented it is seen that all the points of each profile oscillate 

simultaneously, and their behavior in time is similar. 

The above-described dynamics of the change in the character of liquid flow with Taylor number is quile 

explainable physically. Since the Taylor number characterizes the ratio belween the Coriolis forces and the forces 

of viscosily, then in the flow at small values of Ta the viscous friction dominates, which precisely quenches the 

induced oscillations prior to the moment of their onset. As lhe values of Ta increase, lhe effect of Coriolis forces 

on the flow increases. Decaying aperiodic oscillations begin to appear in the system, which develop into a slowly 

decaying motion of the medium at large values of Ta. 
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In conclusion, using the da ta  calculated, we will evaluate the possible effect of the  rotation of the Ear th  on 

the appearance of nonsta t ionary oscillations in a liquid flow. Since this mode of flow becomes noticeable only when 

Ta  >__ 5, for their  appearance,  say  in a water flow, the half-width of the channel  mus t  be equal to 0.26 m. As we 

see, in many cases this value is commensurable  with the t ransverse  dimensions of m a n y  main pipelines and channels  

used in practice. 

N O T A T I O N  

Eu -- P / p V  2, Euler number ;  Re ~ Voh/v, Reynolds  number ;  Ta -- ~oh2/v, T a y l o r  number;  h, half-width of 

the channel;  VO, mean volumetric velocity of liquid flow at Ta  -- 0; v, kinematic coefficient  of viscosity; p,  densi ty;  

u, w, projections of the dimensionless  velocity on the OX and OZ axes of a Car tes ian  coordinate  system related to 

the mean volumetric velocity VO; a~, cos a ,  cos fl, and cos 7, the absolute value and  direct ion cosines of the vector 

of the angular  velocity of the ro ta t ion  of the coordinate  system; T -- a>t, d imens ionless  time; y, z, Car tes ian 

coordinates of the point. 
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